久草热在线_日韩一二区_亚洲日韩国产AV无码无码精品_涩av在线_久久久久久久999精品视频_国产人成在线视频免费播放

Activated Crystalline Healing vs. Autogenous Healing

Activated Crystalline Healing
vs. Autogenous Healing

Abstract: The paper highlights the self-healing ability of fiber reinforced concrete, both autogenous and activated, by the addition of crystalline admixtures. The self-healing process was analyzed by means of image analysis methods and crack sealing index evaluations. The specimens were exposed to a one-year period of continuous cracking and healing cycles under different exposure conditions. The results highlighted the increased performance and consistency of the healing process in the long term, under repeated cracking and curing samples, when crystalline admixtures are used.
?

Introduction

The construction industry is forever changing and improving. The development of new construction techniques and materials is essential for faster and simpler construction, hence the development of crystalline waterproofing admixtures. The crystalline waterproofing technology plays a vital role in the construction industry today by enabling cost-effective and streamlined construction of waterproof and durable concrete structures.

When crystalline admixtures are added to concrete, the concrete has the ability to self-heal and seal all cracks, pores and capillaries inside the concrete matrix, resulting in a waterproof concrete element with the ability to withstand high hydrostatic pressure.

Naturally, concrete self-heals as a result of the continuation of the incomplete hydration process, which takes place over time as the concrete is exposed to water. 20-30% of the un-hydrated cement particles come into contact with water as it flows through the cracked and porous concrete during the weeks, months, or even years after it was constructed. A delayed hydration process is then activated, forming CSH crystals that contribute to crack closure. Additional crack closure can take place as a result of calcium ions (made available by the calcium hydroxide formed as a byproduct of the cement hydration process) reacting with carbonate ions (made available by carbon dioxide in the air or dissolved in the water) to form calcium carbonate crystals, which contribute to the self-healing effect. This process is called autogenous healing. Although it does have the limited ability to self-heal and seal cracks, this process takes long and causes deterioration of the concrete in the process.

By adding crystalline admixture to concrete, it allows concrete to have stimulated healing abilities that act much faster and more efficiently to ensure a waterproof and durable concrete structure.

The beauty of the self-healing ability of concrete containing crystalline admixture is that this phenomenon can take place for the lifetime of the concrete, even under repeated crack formation. This report will summarize tests done at Politecnico di Milano, Italy, to investigate the ability of concrete containing crystalline admixture to continuously self-heal when exposed to repeated cracking between the healing cycles. The test will be completed along with a control sample, so the difference between autogenous healing and stimulated healing can be compared.
?

Experiment

The main objective of the reported study was to analyze the repeated self-healing ability of Fiber Reinforced Concrete (FRC), with and without the addition of a crystalline admixture, into the concrete mix. By means of image analysis methods, the cracks have been closely monitored and studied to determine the crack evolution and healing periods over time, while exposed to different healing/curing conditions.

Two identical FRC mixes were prepared; one mix was used as the control mix without any crystalline admixture (M1), and a commercially available admixture (Penetron Admix) was added to the other mix (M2). The admixture was dosed at 0.8% by weight of cement, as per manufacturer’s specifications. Fiber was primarily added to the concrete mix to control the cracking process.

Nine prism specimens were cast (150x150x600mm) for each mix. Each specimen underwent testing to determine the FRC mechanical characteristics according to EN 14651. After the FRC mechanical characteristics were known, the prism specimens were split into two halves, each half was cut into tile specimens as shown in Figure 1(a-c) below. These concrete tile specimens were poured in a certain way to ensure the fibers were positioned along the length of the prism. The tile specimens were indented and cut to plan the fracture plane either parallel [X1, X2, X3] or perpendicular [Y1, Y2, Y3] to the main fiber alignment.
?

Activated Crystalline Healing vs Autogenous - Figure 1

Figure 1: Concrete pouring and cutting of specimens for the self-healing study (Adapted from Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632)

The tile specimens were cured in a moist room at T = 20°C and RH = 95% for four months. After the curing process was complete, the tiles were pre-cracked according to the Double Edge Wedge Splitting (DEWS) testing methodology also developed at Politecnico di Milano (di Prisco, M., Ferrara, L. and Lamperti, M.G.L.: “Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behavior of fiber reinforced cementitious composites”, Materials and Structures, vol. 46, n° 11, November 2013, pp. 1893-1918). An average crack opening equal to 0.25mm was controlled and measured at mid-ligament depth, both on the front and rear face of the specimen (Figure 2).

Activated Crystalline Healing vs Autogenous - Figure 2

Figure 2: Geometry (a) and setup details (b) of DEWS specimens (Adapted from Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632)
?

The cracked specimens were exposed to three different curing conditions:

  1. Fully immersed in water

  2. Open air (Lab Courtyard)

  3. Wet/Dry cycles (4 days in water followed by 3 days in open air - repeated)

Different durations of the initial curing periods were scheduled, respectively equal to one (FT-1), three (FT-3) and six months (FT-6).

When the initial curing period was completed, the specimens were further cracked up to an additional average crack opening of 0.25mm and then cured in the same initial conditions for an additional period, alternatively lasting one or two months. Cracking and curing cycles repeated up to a total duration of one year. Although the crack widths were carefully controlled at 0.25mm, the maximum crack width encountered was 0.3mm. Results are tabulated in Table 1 below.
?

Table 1: Summary of experimental results (Adapted from Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632)

Specimens

Healing Cycles (months)

FT-6 (23)

6

1

2

1

2

FT-3 (20)

3

1

2

1

2

1

2

FT-1 (22)

1

2

3

1

2

1

2


As an example, 23 specimens labelled FT-6 were subjected to the following conditions: pre-cracking at 0.25mm, 6 months curing, further cracking up to additional 0.25mm, 1 month curing, further cracking up to additional 0.25mm, 2 months curing, further cracking up to additional 0.25mm, 1 month curing, further cracking up to additional 0.25mm and 2 months curing.
?

Results

The self-sealing of the cracks was investigated and quantified by means of image analysis. The cracks were identified using a digital microscope. The crack sealing was monitored by comparing the crack width measurements collected through studying the images taken of the same specimen at different times during the healing process.

The cracks were analyzed by following the steps below:

  1. Identify the single crack that needs to be analyzed. (Figure 3a)

  2. Apply a filter to the image that allows its binarization. (Figure 3b) Binarization allows for the pixels of the crack to be classified into a black or white category.

  3. Outlier pixels that don’t belong to the crack can be eliminated to create a clearer image to analyze and allow for the quantification of the crack area. (Figure 3c)

Activated Crystalline Healing vs Autogenous - Figure 3

Figure 3: Crack imaging and binarization process (Adapted from Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632)
?

The process described above was applied to each DEWS specimen along the cracking and healing cycles. The results quantified that crack sealing is a function of the exposure conditions and time, which led to the Sealing Index formula as defined below.

Activated Crystalline Healing vs Autogenous - Sealing Index Formula
?

The Crack Sealing Index (CSI) for each tested specimen is shown in Figure 4 below. It is clear that the most favorable self-healing condition is continuous water immersion, followed by wet and dry cycles and lastly by exposure to air.
?

Activated Crystalline Healing vs Autogenous - Figure 4

Figure 4: CSI plotted as a function of exposure condition and crack width for an investigation period of one year. M1-Reference concrete, M2-Concrete with Crystalline Admixture. FT-1: one month initial healing cycle, FT-6: six month initial healing cycle. (Adapted from Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632)
?

It is also evident that only specimens with cracks narrower than 0.15mm were able to self-heal completely when immersed in water. Even though a longer initial self-healing (6 months as compared to 1 month) resulted in better sealing, cracks narrower than 0.15mm immersed in water after one year of cracking/healing cycles, irrespective of initial self-healing period, achieved complete crack closure.

It was, however, very clear that the presence of crystalline admixture resulted in a consistent and faster self-healing process after repeated cracking and healing cycles.
?

Conclusion

The purpose of this study was to analyze the repeated self-healing ability of Fiber Reinforced Concrete (FRC), with and without the addition of a crystalline admixture into the concrete mix. By means of image analysis methods, the cracks were closely monitored and studied to determine the crack evolution and healing periods over a one-year period, exposed to different healing/curing conditions, including immersion in water and exposure to wet/dry cycles, as well as exposure to open air. The specimens were subjected to repeated cracking and healing cycles during the one-year period.

The main conclusions of the study hold as follows:

  • The self-healing and crack-sealing performance is mostly affected by the exposure conditions.
    ?

  • The M1 specimens (Control/Standard concrete mix) immersed in water, continuously or sporadically (fully immersed or exposed to wet/dry cycles), resulted in an average crack closure (Sealing Index) of 45-85% for cracks up to 0.15mm in size and an average crack closure of 35-75% for cracks up to 0.3mm in size. This was true at the end of each healing cycle before the new cracking event took place.
    ?

  • The M2 specimens (concrete containing Crystalline Admixture) immersed in water, continuously or sporadically (fully immersed or exposed to wet/dry cycles), resulted in an almost complete crack closure (Sealing Index) of 80-100% for cracks up to 0.15mm in size and an average crack closure of 50-100% for cracks up to 0.3mm in size (biggest crack width encountered during testing). This was true at the end of each healing cycle before the new cracking event took place.
    ?

  • The self-healing ability of the M2 specimens (concrete containing Crystalline Admixture) immersed in water was stimulated and enhanced with time, even under repeated cracking and healing cycles. This phenomenon is due to an osmotic migration of the fresh crystalline admixture particles, being smaller than that of cement and finer than the pore network, deeper into the concrete matrix along the crack where they are consumed by the healing reactions. This migration doesn’t occur for cement particles. The self-healing ability of concrete containing crystalline admixture (engineered healing) thus results in more consistent and faster self-healing compared to the control/standard concrete mix (autogenous healing).
    ?

  • Autogenous healing will be able to seal cracks narrower than 0.15mm over time, where autonomous/engineered healing, due to the addition of crystalline admixtures, will continuously seal cracks up to 0.3mm (biggest crack width encountered during testing) when exposed to water, and in a shorter timeframe, as well.
    ?

Concrete structures constructed with crystalline admixtures will have the ability to self-heal cracks for the lifespan of the structure, resulting in a more durable structure and reduced maintenance costs.


References

  1. Cuenca, E., Tejedor, A. and Ferrara, L.: “A methodology to assess crack sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles”, Construction and Building Materials, 179, 10 August 2018, pp. 619-632.
    ?

  2. Ferrara, L., Cuenca E., Tejedor, A. and Gastaldo Brac, E.M.: “Performance of concrete with and without crystalline admixtures under repeated cracking/healing cycles”, Proceedings ICCRRR2018, Cape Town, November 19-21, 2018

主站蜘蛛池模板: 亚洲国产精品一区在线观看不卡|久久精品视频免费在线观看|米奇777超碰欧美日韩亚洲|国产一区二区视频在线观看免费|玩弄美艳馊子高潮秀色可贪|日本做暖暖xo小视频 | 男女草草草|国产精品成人久久|日韩成人激情|精品欧美国产一区二区三区不卡|草草網站影院白絲內射|国产免费又黄又爽又刺激蜜月=al | 精品乱久久|www亚洲成人|麻豆91爱爱|99日韩精品|免费看日韩大片|国产精品视频一区视频二区 | 狂躁美女大bbbbbb在线观看|亚洲=aV日韩=aV无码=a琪琪|BBW极度另类孕妇|中文资源在线官网|久久久久国产精品熟女影院|狠狠老司机 | 中文字幕58页|日日碰狠狠躁久久躁孕妇|日韩=av在线免费看|国产精品嘛豆传媒|2020久久国产精品|日韩乱轮 | 大内密探零性|国产美女自拍小视频|久久久久久久综合狠狠综合|九九热免费精品|性=a毛片|午夜免费啪啪 | 业余自由性别成熟偷窥|国产夫妻原创自拍|91精品区|青青青爽视频在线观看|黄片毛片在线|朋友的姐姐2在线观看 | tube国产麻豆|w两个世界完整免费观看超清完整|久久久亚洲精品动漫无码|久热久爱免费精品视频在线|国产嫩草在线视频|67149中文无码久久 | 嗯嗯嗯在线观看|亚洲国产欧美日本视频|国产成人综合色就色综合|国产精品自拍500|国产精品91一区二区三区|免费黄色成人 | 男同免费|久久久久久草莓香蕉步兵|亚洲女女女同性VIDEO|免费的=av不用播放器的|黄频网站在线观看|久久久88 | www.久草.com|日本不卡高清|丁香花免费完整高清观看|国产一级爽快片在线观看|亚洲多毛女人厕所小便|成人在线视频观看 | 91精品福利视频|午夜激情国产|国产=aV无码专区亚洲=aV琪琪|国产=aV无码专区国产乱码|一级片日本|久久久国产成人一区二区三区 | 色妹子影院|国产福利在线永久视频|国产精品日韩精品|天堂在线99香蕉在线视频|日本欧美一区二区免费不卡|少妇人妻在线无码天堂视频网 | 国产大学生粉嫩无套流白浆|老司机久久99久久精品播放免费|日本国产三级|久久久久久久久久久久久久久久久久=av|欧美日本精品|涩涩91 | 免费线上=av|成人欧美精品一区二区|色人阁网站|欧美精品一区二区免费视频|日韩综合色|国产黄色精品视频 | 一本一道波多野毛片中文在线|久久久久久久久久亚洲精品|高潮又爽又黄又无遮挡免费软件|57p=ao国产成永久免费视频|在线国产欧美|九草=av | 粗壮挺进邻居人妻无码|久久天天拍|#NAME?|日本亚洲黄色|久久精品国产只有精品96|日本成年人免费网站 | 天天爽天天草|久久成人一区二区|国语对白露脸XXXXXX|黄色片视频在线免费观看|川上优在线|中国黄色免费 | 亚洲午夜久久久综合37日本|欧美高潮抽搐喷水大叫|啪一啪鲁一鲁|亚洲欧洲美洲无码精品V=a|亚洲高清视频网站|三级黄色影院 | 中文字幕一级毛片|538精品视频在线|www亚洲|白丝=av片|网友自拍=av|男人边吻奶边挵进去视频 | 亚洲狠狠婷婷综合久久蜜桃|国产成人精品福利网站人|爆乳美女脱内衣18禁裸露网站|免费一级特黄特色大片|欧美成人亚洲|国产精品麻豆v=a在线播放 | 精品国产免费久久久久久桃子图片|六月婷婷久久|黄色在线观看免费视频|丰满熟妇XXXX性PPX人交|国内自拍网址|97色干 | 久热中文字幕无码视频|波多野结衣桃色视频|国产成人精品日本亚洲91桃色|91精品国产调教在线观看|人妻的渴望波多野结衣|黄色=a一级毛片 | hh99me福利毛片|18国产精品白浆在线观看免费|无码午夜人妻一区二区三区不卡视频|免费看无码自慰一区二区|亚洲一区二区卡|天天操天天艹 | 国语精品对白露脸少妇网站|快好爽射给我视频|国产熟妇另类久久久久久|在线看免费视频|www久久九|亚洲综合欧美另类 | 韩国日本一区二区三区|91视频老司机|成人丁香社区|国产精选久久久久久|狠狠色噜噜狠狠狠狠888米奇|首页视频蝌蚪九色 | 日韩网站中文字幕|国产精品入口在线观看|少妇高潮喷水久久久影院|丰满爆乳无码一区二区三区|一区二区日本在线|婷婷777 | 亚洲免费看片网站|欧美香蕉|久久免费视老师机影片|国产精品成人久久小草|日本熟妇大屁股人妻|性色=a∨人人爽网站HDkp885 | 天天操天天干天天玩|亚洲人在线视频|国产精品18久久久久vr手机版特色|高清一二三区|被黑人粗黑大肉奉视频|97国产dvd | 蜜臀=aⅴ精品一区二区三区|5c5c5c5c|午夜免费|四虎影视最新免费版|色噜噜狠狠狠狠色综合久|精品服丝袜无码视频一区|国产一区日韩一区 | 日本一区二区三区四区视频|亚洲一区黄色|久久综合狠狠综合久久狠狠色综合|法国性xxxxx极品|久久无码=aV中文出轨人妻|无码少妇一区二区三区=av | 大胆L少妇BBBBBB流水|欧美操日韩|麻豆视传媒精品=aV|大地资源色婷婷视频在线|亚洲影视一区二区三区|成年男女免费视频在线观看不卡 | 无码国产精品一区二区VR|欧美精品亚洲精品日韩专区v=a|欧美xxx久久|黄在线观看免费|国产草草草|7777kkk亚洲综合欧美网站 | 国产精品卡1卡2卡3|色八网站首页|潜行者40集免费观看视频|国产精品国产三级国产传播|小嫩妇下面好紧好爽视频|亚洲综合精品伊人久久 | 广东少妇大战黑人34厘米视频|日韩午夜在线|国产=aⅴ激情无码久久久无码|精品人妻无码一区二区三区色欲|日本阿v天堂|亚洲视频在线播放 | 久久亚洲=aV成人无码软件|91亚洲网|成人在线看片|成人做爰www网站视频|粉嫩=av一区二区三区高清|免费一级片91 | 国产做=a爰片久久毛片=a我的朋友|国产精品免费精品自在线观看|石原莉奈视频一区二区|亚洲四区网站|热久久国产视频|久久久久久美女 | 女人一区|午夜成人毛片免费观看蜜桔视频|高清无码不用播放器=av|91性网|无码一区二区|一区二区三区三州在线观看视频 | 日韩=av在线中文|三年片在线观看大全中国|日韩视频在线观看中文字幕|91在线看免费|免费人成在线观看视频无码|一个人看的视频www在线观看 | 免费在线观看黄色大片|综合一区无套内射中文字幕|你好星期六在线免费观看|91探花福利精品国产自产在线|成人18夜夜网深夜福利网|九九影院理论片在线观看一级 | 少妇高潮尖叫黑人激情在线|99久久精品国产观看|日韩干干干|精品欧美一区二区三区久久久小说|免费看黄色片|#NAME? |